Select a table column

Select a specific table column using a Table Column expression.

The name of column being selected.

import vitalx.aggregation as va

va.select(va.Sleep.col("efficiency"))

Perform an analysis and select the output value

Perform data analysis with in-built algorithms using value macro expressions:

The name of the value macro, e.g., sleep_score for the Chronotype value macro.

import vitalx.aggregation as va

va.select(va.Sleep.chronotype())

Aggregate a table column

Aggregate a Table Column expression with respect to the group_by clause.

The specified aggregate function is applied to each and every group created by the group_by clause. The result set is N aggregated values where N is the number of groups.

Aggregate functionPython DSLJSON DSL
Minimum$EXPR.min(){ "aggregate": "min", "arg": $EXPR }
Maximum$EXPR.max(){ "aggregate": "max", "arg": $EXPR }
Mean$EXPR.mean(){ "aggregate": "mean", "arg": $EXPR }
Median$EXPR.median(){ "aggregate": "median", "arg": $EXPR }
Standard Deviation$EXPR.stddev(){ "aggregate": "stddev", "arg": $EXPR }
Count$EXPR.count(){ "aggregate": "count", "arg": $EXPR }
Oldest Value$EXPR.oldest(){ "aggregate": "oldest", "arg": $EXPR }
Newest Value$EXPR.newest(){ "aggregate": "newest", "arg": $EXPR }
Aggregate functionPython DSLJSON DSL
Sum$EXPR.sum(){ "aggregate": "sum", "arg": $EXPR }
  • the aggregation function name, e.g., sum; or
  • if the Split by Source mode is enabled — $FUNCTION_NAME.$SOURCE_COLUMN_NAME, e.g., mean.efficiency.
import vitalx.aggregation as va

va.select(
    va.Sleep.col("stage_asleep_second").newest()
)

Select the Index Column

Select the primary datetime index of the table using the Index Column expression.

timestamp (constant).

import vitalx.aggregation as va

va.select(va.Sleep.col("efficiency"))

Select the Group Key Columns

Select the Group Key Columns associated with the group_by clause.

You can select one specific group key column by offset, or select all group key columns with a * wildcard.

group_key.$OFFSET, where $OFFSET corresponds to the N-th expression of the group_by clause.

import vitalx.aggregation as va

# Select all group key columns
va.select(va.group_key("*"))

# Select the 2nd group key column
va.select(va.group_key(2))